

# **C6**+

High Strength Epoxy for All Conditions



## **DESCRIPTION/SUGGESTED SPECIFICATIONS\***

\*Suggested Specifications see page 43

# One product for most environmental conditions and weather conditions

Design and use with confidence with Epcon C6+ featuring 35% greater bond strength than the closest competition in 70° cracked concrete, and better performance in dry, saturated and water filled conditions.

## **ADVANTAGES**

- Higher average bond strength than competition in cracked concrete
- Excellent performance in diamond cored and oversized holes.
- Better performance in dry, saturated, and waterfilled conditions.
- Safe & durable to use at job sites (cartridges vs. sausage packs)
- Simplifies specification process by providing a comprehensive list of 3rd-party approvals
- 24-month shelf life.

# **Curing Times**

| BASE MATERIAL | WORKING           | FULL             |
|---------------|-------------------|------------------|
| (F°/C°)       | TIME <sup>2</sup> | <b>CURE TIME</b> |
| 104°/ 40°     | 3 minutes         | 3 hours          |
| 95°/ 35°      | 4 minutes         | 4 hours          |
| 86°/ 30°      | 6 minutes         | 5 hours          |
| 77°/ 25°      | 8 minutes         | 6 hours          |
| 72°/ 22°      | 11 minutes        | 7 hours          |
| 59°/ 15°      | 15 minutes        | 8 hours          |
| 50°/ 10°      | 20 minutes        | 12 hours         |
| 40°/ 4.4°     | 20 minutes        | 24 hours         |
|               |                   |                  |

For concrete temperatures between 40-50°F. Adhesive must be maintained at a minimum of 50°F during installation.

<sup>2</sup> Working time is max time from the end of mixing to when the insertion of the threaded rod or rebar into the adhesive shall be completed.

## **INSTALLATION STEPS**



\*Water saturated concrete and water-filled hole applications require 4x's air, 4x's brushing, and 4x's air



**TW Red Head**<sup>\*</sup> Call our toll free number **800-848-5611** or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

# **E**PCON **C6**+



| Product Category                                               | rari no. | Description                                                           | Carton Qty |
|----------------------------------------------------------------|----------|-----------------------------------------------------------------------|------------|
| Epcon C6+ Epoxy                                                |          |                                                                       |            |
| Epcon C6+ 20 fl. Oz cartridge                                  | C6P-20   | Epcon C6+ 20 fl. oz cartridge                                         | 6          |
| Epcon C6+ 10 fl. Oz cartridge                                  | C6P-10   | Epcon C6+ 10 fl. oz cartridge,<br>installs with 10oz. dispensing tool | 6          |
| Mixing Nozzles                                                 |          |                                                                       |            |
| Mixing Nozzle                                                  | A24S     | Mixing Nozzle for C6P-10                                              | 24         |
| Mixing Nozzle                                                  | \$55     | Mixing Nozzle for C6P-20                                              | 24         |
| High Flow Mixing Nozzle                                        | \$75     | High Flow Nozzle for C6P-20 (for 5/8" diameter hole or larger)        | 24         |
| Mixing Nozzle Extension                                        | S75EXT   | Nozzle Extension For S75 High<br>Flow Nozzle                          | 24         |
| Dispensing Guns                                                |          |                                                                       |            |
| Dispensing Gun - 10 oz.                                        | A100     | Manual Dispenser for C6P-10                                           | 1          |
| Dispensing Gun – 20 oz.                                        | E102-V2  | Manual Dispenser for C6P-20                                           | 1          |
| Pneumatic Dispensing Gun - 20 oz.                              | E202     | Pneumatic Dispenser for C6P-20                                        | 1          |
| Piston Plug                                                    |          |                                                                       |            |
|                                                                | PL-5834  | Piston Plug for 5/8" and ¾"<br>diameter anchors                       | 10         |
| Piston plugs for deep embedment installations greater than 10" | PL-7810  | Piston Plug for 7/8" and 1"<br>diameter anchors                       | 10         |
|                                                                | PL-1250  | Piston Plug for 1-1/4" diameter<br>anchors                            | 10         |

| Wire Brushes            | Part No. | Anchor Dia. | Rebar        | Drill Bit Dia.      | Brush Dia.       | <b>Overall Length</b> | Qty |
|-------------------------|----------|-------------|--------------|---------------------|------------------|-----------------------|-----|
| 3/8" Diameter Brush     | SB038    | 3/8"        | No.3         | 7/16"               | 5/8"             | 4-7/8"                | 4   |
| 1/2" Diameter Brush     | SB012    | 1/2"        | No. 4        | 9/16"               | 3/4"             | 4-7/8"                | 4   |
| 5/8" Diameter Brush     | SB058    | 5/8"        | No.5         | 3/4"                | 1"               | 4-7/8"                | 4   |
| 3/4" Diameter Brush     | SB034    | 3/4"        | No.6         | 7/8"                | 1-1/4"           | 4-7/8"                | 4   |
| 7/8" Diameter Brush     | SB078    | 7/8"        | No. 7        | 1"                  | 1-1/2"           | 5-1/8"                | 4   |
| 1" Diameter Brush       | SB010    | 1"          | No.7         | 1-1/8"              | 1-5/8"           | 5-1/4"                | 4   |
| 1-1/4" Diameter Brush   | SB125    | 1-1/4"      | No. 10       | 1-3/8"              | 1-3/4"           | 5-1/4"                | 4   |
| Brush Extension         | ESDS-38  | W           | /ire brush 1 | 2" usable extension | on with SDS+ ad  | aptor                 | 1   |
| Brush Extension         | EHAN-38  |             | Wire brush   | n 12" usable exter  | ision with T-Han | dle                   | 1   |
| Hole Plugs              | Part No. |             |              | Hole Diame          | eter             |                       | Qty |
| 3/8" Diameter Hole Plug | E038     |             |              | 7/16"               |                  |                       | 25  |
| 1/2" Diameter Hole Plug | E012     |             |              | 9/16"               |                  |                       | 25  |
| 5/8" Diameter Hole Plug | E058     |             |              | 3/4"                |                  |                       | 20  |
| 3/4" Diameter Hole Plug | E034     |             |              | 7/8"                |                  |                       | 20  |
| 7/8" Diameter Hole Plug | E078     |             |              | 1"                  |                  |                       | 10  |
| 1" Diameter Hole Plug   | E010     |             |              | 1-1/8"              |                  |                       | 10  |



SB038 - 3/8" Diameter Brush



E038 - 3/8" Diameter Hole Plug



#### **ESTIMATING TABLES**

## **C6P-20** Number of Anchoring Installations Per Cartridge\* 20 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

| REBAR | DRILL     |             | EMBEDMENT DEPTH IN INCHES (mm) |          |           |              |              |           |              |              |               |               |               |               |               |               |
|-------|-----------|-------------|--------------------------------|----------|-----------|--------------|--------------|-----------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|
|       | HOLE DIA. | 1<br>(25.4) | 2                              | 3 (76.2) | 4 (101.6) | 5<br>(127 0) | 6<br>(152 4) | 7 (177.8) | 8<br>(203.2) | 9<br>(228.6) | 10<br>(254.0) | 11<br>(279 4) | 12<br>(304.8) | 13<br>(330 2) | 14<br>(355.6) | 15<br>(381 0) |
|       | Intelled  | (23.4)      | (30.0)                         | (70.2)   | (101.0)   | (127.0)      | (152.4)      | (177.0)   | (203.2)      | (220.0)      | (234.0)       | (277.4)       | (304.0)       | (330.2)       | (333.0)       | (301.0)       |
| # 3   | 7/16      | 310.8       | 155.4                          | 103.6    | 77.7      | 62.2         | 51.8         | 44.4      | 38.8         | 34.5         | 31.1          | 28.3          | 25.9          | 23.9          | 22.2          | 20.7          |
| # 4   | 5/8       | 198.9       | 99.5                           | 66.3     | 49.7      | 39.8         | 33.2         | 28.4      | 24.9         | 22.1         | 19.9          | 18.1          | 16.6          | 15.3          | 14.2          | 13.3          |
| # 5   | 3/4       | 138.1       | 69.1                           | 46.0     | 34.5      | 27.6         | 23.0         | 19.7      | 17.3         | 15.3         | 13.8          | 12.6          | 11.5          | 10.6          | 9.9           | 9.2           |
| # 6   | 7/8       | 101.5       | 50.7                           | 33.8     | 25.4      | 20.3         | 16.9         | 14.5      | 12.7         | 11.3         | 10.1          | 9.2           | 8.5           | 7.8           | 7.2           | 6.8           |
| #7    | 1-1/8     | 61.4        | 30.7                           | 20.5     | 15.3      | 12.3         | 10.2         | 8.8       | 7.7          | 6.8          | 6.1           | 5.6           | 5.1           | 4.7           | 4.4           | 4.1           |
| # 8   | 1-1/8     | 49.7        | 24.9                           | 16.6     | 12.4      | 9.9          | 8.3          | 7.1       | 6.2          | 5.5          | 5.0           | 4.5           | 4.1           | 3.8           | 3.6           | 3.3           |
| # 9   | 1-3/8     | 41.1        | 20.5                           | 13.7     | 10.3      | 8.2          | 6.8          | 5.9       | 5.1          | 4.6          | 4.1           | 3.7           | 3.4           | 3.2           | 2.9           | 2.7           |
| # 10  | 1-1/2     | 43.5        | 17.3                           | 11.5     | 8.6       | 6.9          | 5.8          | 4.9       | 4.3          | 3.8          | 3.5           | 3.1           | 2.9           | 2.7           | 2.5           | 2.3           |
| # 11  | 1-3/4     | 25.4        | 12.7                           | 8.5      | 6.3       | 5.1          | 4.2          | 3.6       | 3.2          | 2.8          | 2.5           | 2.3           | 2.1           | 2.0           | 1.8           | 1.7           |

\* Oversized holes acceptable but volume of adhesive will increase.

\* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste.

# **C6P-20** Number of Anchoring Installations Per Cartridge\* 20 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

| R     | DD     | DRILL               |          |          |             |              |              | EM           | IBEDMENT D   | EPTH IN IN   | CHES (mm)    |               |               |               |               |               |               |
|-------|--------|---------------------|----------|----------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|
| In.   | (mm)   | HOLE DIA.<br>Inches | 1 (25,4) | 2 (50.8) | 3<br>(76.2) | 4<br>(101.6) | 5<br>(127.0) | 6<br>(152.4) | 7<br>(177.8) | 8<br>(203.2) | 9<br>(228.6) | 10<br>(254.0) | 11<br>(279.4) | 12<br>(304.8) | 13<br>(330.2) | 14<br>(355.6) | 15<br>(381.0) |
| 1/4   | (6.4)  | 5/16                | 795.6    | 397.8    | 265.2       | 198.9        | 159.1        | 132.6        | 113.7        | 99.5         | 88.4         | 79.6          | 72.3          | 66.3          | 61.2          | 56.8          | 53.0          |
| 3/8   | (9.5)  | 7/16                | 405.9    | 203.0    | 135.3       | 101.5        | 81.2         | 67.7         | 58.0         | 50.7         | 45.1         | 40.6          | 36.9          | 33.8          | 31.2          | 29.0          | 27.1          |
| 1/2   | (12.7) | 9/16                | 245.6    | 122.8    | 81.9        | 61.4         | 49.1         | 40.9         | 35.1         | 30.7         | 27.3         | 24.6          | 22.3          | 20.5          | 18.9          | 17.5          | 16.3          |
| 5/8   | (15.9) | 3/4                 | 138.1    | 69.1     | 46.0        | 34.5         | 27.6         | 23.0         | 19.7         | 17.3         | 15.3         | 13.8          | 12.6          | 11.5          | 10.6          | 9.9           | 9.2           |
| 3/4   | (19.1) | 7/8                 | 101.5    | 50.7     | 33.8        | 25.4         | 20.3         | 16.9         | 14.5         | 12.7         | 11.3         | 10.1          | 9.2           | 8.5           | 7.8           | 7.2           | 6.8           |
| 7/8   | (22.2) | 1                   | 77.7     | 38.8     | 25.9        | 19.4         | 15.5         | 12.9         | 11.1         | 9.7          | 8.6          | 7.8           | 7.1           | 6.5           | 6.0           | 5.5           | 5.2           |
| 1     | (25.4) | 1-1/8               | 61.4     | 30.7     | 20.5        | 15.3         | 12.3         | 10.2         | 8.8          | 7.7          | 6.8          | 6.1           | 5.6           | 5.1           | 4.7           | 4.4           | 4.1           |
| 1-1/4 | (31.8) | 1-3/8               | 41.1     | 20.5     | 13.7        | 10.3         | 8.2          | 6.8          | 5.9          | 5.1          | 4.6          | 4.1           | 3.7           | 3.4           | 3.2           | 2.9           | 2.7           |

\* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. \* Oversized holes acceptable but volume of adhesive will increase.

## **C6P-10** Number of Anchoring Installations Per Cartridge\* 10 Fluid Ounce Cartridge Using Reinforcing Bar with C6+ Adhesive in Solid Concrete

| REBAR       | DRILL             |                  |              |                 |                |                 |                  | EMBEDME            | NT DEPTH IN   | INCHES (mn        | n)                |                   |               |                |                 |             |
|-------------|-------------------|------------------|--------------|-----------------|----------------|-----------------|------------------|--------------------|---------------|-------------------|-------------------|-------------------|---------------|----------------|-----------------|-------------|
|             | HOLE DIA.         | 1                | 2            | 3               | 4              | 5               | 6                | 7                  | 8             | 9                 | 10                | 11                | 12            | 13             | 14              | 15          |
|             | INCHES            | (25.4)           | (30.8)       | (76.2)          | (101.6)        | (127.0)         | (152.4)          | (177.8)            | (203.2)       | (228.6)           | (254.0)           | (279.4)           | (304.8)       | (330.2)        | (355.0)         | (381.0)     |
| # 3         | 7/16              | 129.5            | 64.7         | 43.2            | 32.4           | 25.9            | 21.6             | 18.5               | 16.2          | 14.4              | 12.9              | 11.8              | 10.8          | 10.0           | 9.2             | 8.6         |
| # 4         | 5/8               | 82.9             | 41.4         | 27.6            | 20.7           | 16.6            | 13.8             | 11.8               | 10.4          | 9.2               | 8.3               | 7.5               | 6.9           | 6.4            | 5.9             | 5.5         |
| # 5         | 3/4               | 56.7             | 28.8         | 19.2            | 14.4           | 11.5            | 9.6              | 8.2                | 7.2           | 6.4               | 5.8               | 5.2               | 4.8           | 4.4            | 4.1             | 3.8         |
| # 6         | 7/8               | 42.3             | 21.1         | 14.1            | 10.6           | 8.5             | 7.0              | 6.0                | 5.3           | 4.7               | 4.2               | 3.8               | 3.5           | 3.3            | 3.0             | 2.8         |
| #7          | 1-1/8             | 25.6             | 12.8         | 8.5             | 6.4            | 5.1             | 4.3              | 3.7                | 3.2           | 2.8               | 2.6               | 2.3               | 2.1           | 2.0            | 1.8             | 1.7         |
| # 8         | 1-1/8             | 20.7             | 10.4         | 6.9             | 5.2            | 4.1             | 3.5              | 3.0                | 2.6           | 2.3               | 2.1               | 1.9               | 1.7           | 1.6            | 1.5             | 1.4         |
| # 9         | 1-3/8             | 17.1             | 8.6          | 5.7             | 4.3            | 3.4             | 2.9              | 2.4                | 2.1           | 1.9               | 1.7               | 1.6               | 1.4           | 1.3            | 1.2             | 1.1         |
| # 10        | 1-1/2             | 14.4             | 7.2          | 4.8             | 3.6            | 2.9             | 2.4              | 2.1                | 1.8           | 1.6               | 1.4               | 1.3               | 1.2           | 1.1            | 1.0             | 1.0         |
| # 11        | 1-3/4             | 10.6             | 5.3          | 3.5             | 2.6            | 2.1             | 1.8              | 1.5                | 1.3           | 1.2               | 1.1               | 1.0               | 0.9           | 0.8            | 0.8             | 0.7         |
| * The numbe | r of anchoring in | ctallations is k | acod upon ca | loulations of b | ala valumac uc | ing ANCI tolora | nco carbido tipr | and drill hits the | nominal areas | f the reinforcing | a hars and the st | rocc areas of the | throadod rode | Those octimate | c do not accour | t for warto |

\* Oversized holes acceptable but volume of adhesive will increase.

## **C6P-10** Number of Anchoring Installations Per Cartridge\* 10 Fluid Ounce Cartridge Using Threaded Rod with C6+ Adhesive in Solid Concrete

|              | DRILL               |             |             |             |              |              |              | EMBEDM       | ENT DEPTH    | I IN INCHE   | 5 (mm)        |               |               |               |               |               |
|--------------|---------------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|
| ROD          | HOLE DIA.<br>INCHES | 1<br>(25.4) | 2<br>(50.8) | 3<br>(76.2) | 4<br>(101.6) | 5<br>(127.0) | 6<br>(152.4) | 7<br>(177.8) | 8<br>(203.2) | 9<br>(228.6) | 10<br>(254.0) | 11<br>(279.4) | 12<br>(304.8) | 13<br>(330.2) | 14<br>(355.6) | 15<br>(381.0) |
| 1/4 (6.4)    | 5/16                | 331.5       | 165.7       | 110.5       | 82.9         | 66.3         | 55.2         | 47.4         | 41.4         | 36.8         | 33.1          | 30.1          | 27.6          | 25.5          | 23.7          | 22.1          |
| 3/8 (9.5)    | 7/16                | 169.1       | 84.6        | 27.6        | 42.3         | 33.8         | 28.2         | 24.2         | 21.1         | 18.8         | 16.9          | 15.4          | 14.1          | 13.0          | 12.1          | 11.3          |
| 1/2 (12.7)   | 9/16                | 102.3       | 51.2        | 19.2        | 25.6         | 20.5         | 17.1         | 14.6         | 12.8         | 11.4         | 10.2          | 9.3           | 8.5           | 7.9           | 7.3           | 6.8           |
| 5/8 (15.9)   | 3/4                 | 57.6        | 28.8        | 14.1        | 14.4         | 11.5         | 9.6          | 8.2          | 7.2          | 6.4          | 5.8           | 5.2           | 4.8           | 4.4           | 4.1           | 3.8           |
| 3/4 (19.1)   | 7/8                 | 42.3        | 21.1        | 8.5         | 10.6         | 8.5          | 7.0          | 6.0          | 5.3          | 4.7          | 4.2           | 3.8           | 3.5           | 3.3           | 3.0           | 2.8           |
| 7/8 (22.2)   | 1                   | 32.4        | 16.2        | 6.9         | 8.1          | 6.5          | 5.4          | 4.6          | 4.0          | 3.6          | 3.2           | 2.9           | 2.7           | 2.5           | 2.3           | 2.2           |
| 1 (25.4)     | 1-1/8               | 25.6        | 12.8        | 5.7         | 6.4          | 5.1          | 4.3          | 3.7          | 3.2          | 2.8          | 2.6           | 2.3           | 2.1           | 2.0           | 1.8           | 1.7           |
| 1-1/4 (31.8) | 1-3/8               | 17.1        | 8.6         | 4.8         | 4.3          | 3.4          | 2.9          | 2.4          | 2.1          | 1.9          | 1.7           | 1.6           | 1.4           | 1.3           | 1.2           | 1.1           |

\* The number of anchoring installations is based upon calculations of hole volumes using ANSI tolerance carbide tipped drill bits, the nominal areas of the reinforcing bars and the stress areas of the threaded rods. These estimates do not account for waste. \* Oversized holes acceptable but volume of adhesive will increase.

#### *ITW* **Red Head**

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at www.itwredhead.com

RED HEAD 43

## PACKAGING

- 1. Disposable, self-contained cartridge system capable of dispensing both epoxy components in the proper mixing ratio
- Epoxy components dispensed through a static mixing nozzle that thoroughly mixes the material, and places the epoxy at the base of the pre-drilled hole
- 3. Cartridge markings: Include manufacturer's name, batch number and best-used-by date, mix ratio by volume, ANSI hazard classification, and appropriate ANSI handling precautions

## SUGGESTED SPECIFICATIONS

#### EPOXY ADHESIVE

High Strength EPOXY ADHESIVE:

- 1. Two component resin and hardener, non-sag paste, insensitive to moisture, grey in color, suitable for extreme temperature ranges, for all conditions or substrate materials.
- 2. Meets NSF Standard 61, certified for use in conjunction with drinking water systems.
- 3. Works in wet, damp, and submerged hole.
- 4. Extended Shelf life: Best if used within 2 years.
- 5. Oversized and/or diamond cored holes permitted.

### **PERFORMANCE TABLE**

### Bond Strength Design Information For Fractional Threaded Rod<sup>1,7</sup>

|                            |                                                                | 1                    |                   | r      |       |            |           |            |     |        |
|----------------------------|----------------------------------------------------------------|----------------------|-------------------|--------|-------|------------|-----------|------------|-----|--------|
|                            | <b>N</b> · 1 / /·                                              |                      |                   |        |       | Nominal Th | readed Ro | od Diameto | er  |        |
|                            | Design Information                                             | Symbol               | Units             | 3/8″   | 1/2″  | 5/8″       | 3.4″      | 7/8″       | 1″  | 1-1/4″ |
|                            |                                                                | h.                   | in                | 1-5/8″ | 2″    | 2-1/2″     | 3-1/2"    | 4          | 4   | 5      |
| Minimu                     | IM Effective Installation Depth                                | II <sub>ef,min</sub> | mm                | 60     | 70    | 79         | 89        | 102        | 102 | 127    |
|                            | 56                                                             | h.                   | in                | 7-1/2  | 10    | 12-1/2     | 15        | 17-1/2     | 20  | 25     |
| Maximu                     | IM Effective Installation Depth                                | "ef,max              | mm                | 191    | 254   | 318        | 381       | 445        | 508 | 635    |
| s IIe                      | Characteristic Bond Strength in                                | τ.                   | psi               |        |       |            | 1,350     |            |     |        |
| eratı<br>e A,              | Uncracked Concrete                                             | <sup>c</sup> k,uncr  | N/mm <sup>2</sup> |        |       |            | 9.3       |            |     |        |
| ang                        | Characteristic Bond Strength in                                |                      | psi               | 1,150  | 1,090 | 1,025      | 965       | 900        | 840 | 715    |
|                            | Cracked Concrete                                               | T <sub>k,cr</sub>    | N/mm <sup>2</sup> | 7.9    | 7.5   | 7.1        | 5.1       | 4.7        | 4.4 | 3.8    |
| ۶.<br>د                    | Characteristic Bond Strength in                                |                      | psi               |        |       |            | 1,030     |            |     |        |
| eratu<br>e B, <sup>3</sup> | Uncracked Concrete                                             | τ <sub>k,uncr</sub>  | N/mm <sup>2</sup> |        |       |            | 7.1       |            |     |        |
| empo<br>Rang               | Characteristic Bond Strength in                                |                      | psi               | 875    | 830   | 780        | 735       | 685        | 640 | 545    |
|                            | Characteristic Bond Strength i<br>Cracked Concrete             |                      | N/mm <sup>2</sup> | 6.1    | 5.7   | 5.4        | 5.1       | 4.7        | 4.4 | 3.8    |
| <i>ع</i> ~                 | ۲۰۰۰ Cracked Concrete<br>ور مر Characteristic Bond Strength in |                      | psi               |        |       |            | 725       |            |     |        |
| eratu<br>e C, ₄            | Uncracked Concrete                                             | τ <sub>k,uncr</sub>  | N/mm <sup>2</sup> |        |       |            | 5.0       |            |     |        |
| empi                       | Characteristic Bond Strength in                                |                      | psi               | 620    | 620   | 620        | 620       | 620        | 620 | 620    |
|                            | Cracked Concrete                                               | Tk,cr                | N/mm <sup>2</sup> | 4.3    | 4.3   | 4.3        | 4.3       | 4.3        | 4.3 | 4.3    |
| JSé                        | Dry Concrete                                                   | Φd                   | =                 |        |       |            | 0.65      |            |     |        |
| dition                     | Water-saturated Concrete                                       | Øws                  | iodic             |        | 0.55  |            |           | 0.         | 65  |        |
| Conc                       | Water-filled Hole                                              | Øwf                  | Per<br>Insp       |        |       |            | 0.65      |            |     |        |
| tion                       | Submerged Concrete                                             | Фsub                 |                   |        |       | 0.         | 65        |            |     | 0.55   |
| stalla                     | Dry Concrete                                                   | Фd                   |                   |        |       |            | 0.65      |            |     |        |
| bleIn                      | Water-saturated Concrete                                       | Øws                  | tion              |        |       |            | 0.65      |            |     |        |
| missil                     | Water-filled Hole                                              | Øwf                  | ontir<br>Inspec   |        |       |            | 0.65      |            |     |        |
| Per                        | Submerged Concrete                                             | Фsub                 |                   |        |       |            | 0.65      |            |     |        |

For SI: 1 inch= 25.4 mm, 1 in.<sup>2</sup> = 645.16 mm<sup>2</sup>, 1 lb = 0.004448 kN

- <sup>1</sup> Bond strength values correspond to concrete compressive strength f c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- $^2$  Temperature Range A= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 130°F (55°C)
- $^3$  Temperature Range B= Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 162°F (72°C)
- <sup>4</sup> Temperature Range C = Maximum Long Term Temperature: 110°F (43°C); Maximum Short Term Temperature: 176°F (80°C)5Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- <sup>6</sup> The tabulated value of capplies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of Φ must be determined in accordance with ACI318 D.4.4.
- <sup>7</sup> For sustained loads, bond strengths must be multiplied by 0.73.
- $^{\rm 8}\,$  See ICC-ES ESR 3577 for further design information in accordance with ACI 318  $\,$

### Bond Strength Design Information For Fractional Reinforcing Bar<sup>1,7</sup>

|                  |                                 |                      |                   |        | I     | Nominal Th | readed Ba | ar Diamete | r     |        |
|------------------|---------------------------------|----------------------|-------------------|--------|-------|------------|-----------|------------|-------|--------|
|                  | Design Information              | Symbol               | Units             | No. 3  | No. 4 | No. 5      | No. 6     | No. 7      | No. 8 | No. 10 |
|                  |                                 | h                    | in                | 1-5/8″ | 2″    | 2-1/2″     | 3-1/2″    | 4          | 4     | 5      |
| Minimu           | m Effective Installation Depth  | <sup>11</sup> ef,min | mm                | 60     | 70    | 79         | 89        | 102        | 102   | 127    |
| Mavimu           | um Effective Installation Denth | h.                   | in                | 7-1/2  | 10    | 12-1/2     | 15        | 17-1/2     | 20    | 25     |
| IVIdXIIIIU       | ini checuve instanation pepti   | ייet,max             | mm                | 191    | 254   | 318        | 381       | 445        | 508   | 635    |
| ure<br>25        | Characteristic Bond Strength in | τι                   | psi               |        |       |            | 1,350     |            |       |        |
| eratı<br>Je A,   | Uncracked Concrete              | •к,uncr              | N/mm <sup>2</sup> |        | r     | r          | 9.3       |            |       |        |
| emp<br>Rang      | Characteristic Bond Strength in | -                    | psi               | 1,150  | 1,090 | 1,025      | 965       | 900        | 840   | 715    |
| F -              | Cracked Concrete                | τ <sub>k,cr</sub>    | N/mm <sup>2</sup> | 7.9    | 7.5   | 7.1        | 5.1       | 4.7        | 4.4   | 3.8    |
| e re             | Characteristic Bond Strength in |                      | psi               |        |       |            | 1,030     |            |       |        |
| eratu<br>e B,    | Uncracked Concrete              | T <sub>k,uncr</sub>  | N/mm <sup>2</sup> |        |       |            | 7.1       |            |       |        |
| empe<br>Rang     | Characteristic Bond Strength in |                      | psi               | 875    | 830   | 780        | 735       | 685        | 640   | 545    |
| 24               | Cracked Concrete                | Tk,cr                | N/mm <sup>2</sup> | 6.1    | 5.7   | 5.4        | 5.1       | 4.7        | 4.4   | 3.8    |
| e.               | Cracked Concrete                |                      | psi               |        |       |            | 725       |            |       |        |
| eratui<br>e C, 4 | Uncracked Concrete              | τ <sub>k,uncr</sub>  | N/mm <sup>2</sup> |        |       |            | 5.0       |            |       |        |
| empe<br>Rang     | Characteristic Bond Strength in |                      | psi               | 620    | 620   | 620        | 620       | 620        | 620   | 620    |
| P                | Cracked Concrete                | Tk,cr                | N/mm <sup>2</sup> | 4.3    | 4.3   | 4.3        | 4.3       | 4.3        | 4.3   | 4.3    |
| ١S <sup>6</sup>  | Dry Concrete                    | Фd                   | =                 |        |       |            | 0.65      |            |       |        |
| litior           | Water-saturated Concrete        | Øws                  | iodic<br>ectio    |        | 0.55  |            |           | 0.         | 65    |        |
| Conc             | Water-filled Hole               | Øwf                  | Per<br>Insp       |        |       |            | 0.65      |            |       |        |
| tion             | Submerged Concrete              | Фsub                 |                   |        |       | 0.         | 65        |            |       | 0.55   |
| stalla           | Dry Concrete                    | Фd                   |                   |        |       |            | 0.65      |            |       |        |
| bleIn            | Water-saturated Concrete        | Øws                  | tion              |        |       |            | 0.65      |            |       |        |
| missil           | Water-filled Hole               | Øwf                  | Contir<br>Inspe   |        |       |            | 0.65      |            |       |        |
| Per              | Submerged Concrete              | Фsub                 | <u> </u>          |        |       |            | 0.65      |            |       |        |

- For 51: 1 inch= 25.4 mm, 1 in.² = 645.16 mm² , 1 lb = 0.004448 kN
- $^{\rm 1}$  Bond strength values correspond to concrete compressive strength f c = 2,500 psi. Bond strength values must not be increased for increased concrete compressive strength.
- $^2$  Temperature Range A= Maximum Long Term Temperature: 110' F (43 ' C); Maximum Short Term Temperature: 130'F (55' C)
- <sup>3</sup> Temperature Range B =Maximum Long Term Temperature: 110'F (43 ' C); Maximum Short Term Temperature: 162'F (72'C)
- $^4\,$  Temperature Range C =Maximum Long Term Temperature: 110'F (43'C); Maximum Short Term Temperature: 176' F (80' C)
- <sup>5</sup> Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.
- <sup>6</sup> The tabulated value of c applies when the load combinations of Section 1605.2 of the IBC, or ACI 318 Section 9.2 are used in accordance with ACI 318 D.4.3. If the load combinations of ACI 318 Appendix Care used, the appropriate value of Ø must be determined in accordance with ACI 318 D.4.4.
- <sup>7</sup> For sustained loads, bond strengths must be multiplied by 0.73.
- <sup>8</sup> See ICC-ES ESR 3577 for further design information in accordance with ACI 318

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>

#### **PERFORMANCE TABLE**

#### **C6+** Epoxy Adhesive Average Ultimate Tension and Shear Loads<sup>1,2,3</sup> for Threaded Rod Installed in Grout Filled Concrete Block

| THREADED<br>ROD DIA. | DRILL HOLE<br>DIAMETER<br>In. (mm) | EMBEDMENT<br>DEPTH<br>In. (mm) | ANCHOR<br>LOCATION<br>In. (mm) | ULTIMATE<br>TENSION<br>Lbs. (kN) | ULTIMATE<br>SHEAR<br>Lbs. (kN) |
|----------------------|------------------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|
| 3/8 (9.5)            | 7/16 (11.1)                        | 3 (76.2)                       | GROUTED CELL                   | 4,862 (21.6)                     | N/A                            |
| 1/2 (12.7)           | 5/8 (15.9)                         | 3 (76.2)                       | GROUTED CELL                   | 4,953 (22.0)                     | N/A                            |
| 1/2 (12.7)           | 5/8 (15.9)                         | 6 (152.4)                      | GROUTED CELL                   | 8,214 (36.5)                     | N/A                            |
| 5/8 (15.9)           | 3/4 (19.1)                         | 5 (127.0)                      | GROUTED CELL                   | 7,355 (32.7)                     | N/A                            |
| 3/4 (19.1)           | 7/8 (22.2)                         | 6 (152.4)                      | Note 1                         | 17,404 (77.4)                    | 19,588 (87.1)                  |
| 3/4 (19.1)           | 7/8 (22.2)                         | 6 (152.4)                      | Note 2                         | 17,404 (77.4)                    | 8,668 (38.6)                   |

1 Anchor can be located in grouted cell, "T" joint, or bed joint.

2 Anchor can be located in first grouted cell from edge.

3 Allowable working loads for the single installations under static loading should not exceed 25% (an industry standard) capacity or the allowable load of the anchor rod. Loads based upon testing with ASTM A193, Grade B7 rods.

#### **PERFORMANCE TABLE**

**C6+** Allowable Tension Loads<sup>1,2,3</sup> for Threaded Rod Installed Epoxy Adhesive in Solid Concrete

| THREADED<br>ROD DIA. | EMBE<br>DE | DMENT<br>PTH |                        | I                             | ALLOWABLE TEN<br>ON ADHESIVE   | VSION LOAD B<br>Bond Streng | ASED<br>Th               |                                |                     | AL                        | LOWABLE TEN<br>ON STEEL | ISION LOAD                 | BASED                                 |         |
|----------------------|------------|--------------|------------------------|-------------------------------|--------------------------------|-----------------------------|--------------------------|--------------------------------|---------------------|---------------------------|-------------------------|----------------------------|---------------------------------------|---------|
| In. (mm)             | In.        | (mm)         | 2000 PSI<br>CON<br>Lbs | (13.8 MPa)<br>CRETE<br>. (kN) | 4000 PSI (2<br>CONCI<br>Lbs. ( | 27.6 MPa)<br>RETE<br>(kN)   | 6000 PSI<br>IN CO<br>Lbs | (41.4 MPa)<br>NCRETE<br>. (kN) | ASTN<br>(SAE<br>Lbs | A A307<br>1018)<br>. (kN) | ASTM A1<br>(SAE<br>Lbs. | 93 GR. B7<br>4140)<br>(kN) | ASTM F593<br>AISI 304 SS<br>Lbs. (kN) |         |
| 3/8 (9.5)            | 3-3/8      | (85.7)       | 1,800                  | (8.0)                         | 2,110                          | (9.4)                       | 2,655                    | (11.8)                         | 2,080               | (9.3)                     | 4,340                   | (19.3)                     | 3,995                                 | (17.8)  |
|                      | 4-1/2      | (114.3)      | 2,080                  | (9.2)                         | 2,505                          | (11.1)                      | 2,655                    | (11.8)                         | 2,080               | (9.3)                     | 4,340                   | (19.3)                     | 3,995                                 | (17.8)  |
| 1/2 (12.7)           | 4-1/2      | (114.3)      | 3,315                  | (14.8)                        | 4,420                          | (19.7)                      | 4,420                    | (19.7)                         | 3,730               | (16.6)                    | 7,780                   | (34.6)                     | 7,155                                 | (31.8)  |
|                      | 6          | (152.4)      | 4,780                  | (21.3)                        | 4,900                          | (21.8)                      | 4,900                    | (21.8)                         | 3,730               | (16.6)                    | 7,780                   | (34.6)                     | 7,155                                 | (31.8)  |
| 5/8 (15.9)           | 5-5/8      | (142.9)      | 4,425                  | (19.7)                        | 6,130                          | (27.3)                      | 6,130                    | (27.3)                         | 5,870               | (26.1)                    | 12,230                  | (54.4)                     | 11,250                                | (50.0)  |
|                      | 7-1/2      | (190.5)      | 5,660                  | (25.2)                        | 7,190                          | (32.0)                      | 7,364                    | (32.8)                         | 5,870               | (26.1)                    | 12,230                  | (54.4)                     | 11,250                                | (50.0)  |
| 3/4 (19.1)           | 6-3/4      | (171.5)      | 7,195                  | (32.0)                        | 7,885                          | (35.1)                      | 8,440                    | (37.5)                         | 8,490               | (37.8)                    | 17,690                  | (78.7)                     | 14,860                                | (66.1)  |
|                      | 9          | (228.6)      | 7,940                  | (35.3)                        | 10,345                         | (46.0)                      | 10,345                   | (46.0)                         | 8,490               | (37.8)                    | 17,690                  | (78.7)                     | 14,860                                | (66.1)  |
| 7/8 (22.2)           | 7-7/8      | (200.0)      | 8,810                  | (39.2)                        | 9,430                          | (41.9)                      | 10,260                   | (45.6)                         | 11,600              | (51.6)                    | 25,510                  | (113.5)                    | 20,835                                | (92.7)  |
|                      | 10-1/2     | (266.7)      | N/                     | 'A                            | 12,080                         | (57.0)                      | 12,805                   | (57.0)                         | 11,600              | (51.6)                    | 25,510                  | (113.5)                    | 20,835                                | (92.7)  |
| 1 (25.4)             | 9          | (228.6)      | 10,085                 | (44.9)                        | 11,970                         | (53.3)                      | 11,970                   | (53.0)                         | 15,180              | (67.5)                    | 31,620                  | (140.7)                    | 26,560                                | (118.1) |
|                      | 12         | (304.8)      | 12,180                 | (54.2)                        | 15,545                         | (69.2)                      | 15,760                   | (70.1)                         | 15,180              | (67.5)                    | 31,620                  | (140.7)                    | 26,560                                | (118.1) |
| 1-1/4(31.8)          | 11-1/4     | (285.8)      | 13,915                 | (61.9)                        | 14,245                         | (63.4)                      | 14,245                   | (63.4)                         | 23,800              | (105.9)                   | 49,580                  | (220.6)                    | 34,670                                | (154.2) |
|                      | 15         | (381.0)      | 16,340                 | (72.7)                        | 19,930                         | (88.7)                      | 19,930                   | (88.7)                         | 23,800              | (105.9)                   | 49,580                  | (220.6)                    | 34,670                                | (154.2) |

1 Use lower value of either bond or steel strength for allowable tensile load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances (see below).



1 Use linear interpolation for load factors at edge distances or spacing distances between critical and minimum.

2 Anchors are affected by multiple combination of spacing and/or edge distance loading and direction of the loading. Use the product of tension and shear loading factors in design.

*TW* **Red Head** 

Call our toll free number 800-848-5611 or visit our web site for the most current product and technical information at <u>www.itwredhead.com</u>



#### **PERFORMANCE TABLE**

## **C6+** Allowable Shear Loads<sup>1,2,3</sup> for Threaded Rod Installed Epoxy Adhesive in Solid Concrete

| THREADED<br>ROD DIA. | MINIMUM<br>EMBEDMENT |                                              | ALLOWABLE SHEAR LOAD BA<br>ON CONCRETE STRENGTH | SED                                          | AI                                   | LLOWABLE SHEAR LOAD B<br>ON STEEL STRENGTH  | ASED                                  |
|----------------------|----------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------|
| In. (mm)             | DEPTH<br>In. (mm)    | 2000 PSI (13.8 MPa)<br>CONCRETE<br>Lbs. (kN) | 4000 PSI (27.6 MPa)<br>CONCRETE<br>Lbs. (kN)    | 6000 PSI (41.4 MPa)<br>CONCRETE<br>Lbs. (kN) | ASTM A307<br>(SAE 1018)<br>Lbs. (kN) | ASTM A193 GR. B7<br>(SAE 4140)<br>Lbs. (kN) | ASTM F593<br>AISI 304 SS<br>Lbs. (kN) |
| 3/8 (9.5)            | 3-3/8 (85.7)         | 1,300 (5.8)                                  | 1,465 (6.5)                                     | 1,500 (6.7)                                  | 1,040 (4.6)                          | 2,170 (9.7)                                 | 1,995 (8.9)                           |
| 1/2 (12.7)           | 4-1/2 (114.3)        | 2,855 (12.7)                                 | 3,145 (14.0)                                    | 3,145 (14.0)                                 | 1,870 (8.3)                          | 3,895 (17.3)                                | 3,585 (15.9)                          |
| 5/8 (15.9)           | 5-5/8 (142.9)        | 4,575 (20.3)                                 | 4,950 (22.0)                                    | 4,950 (22.0)                                 | 2,940 (13.1)                         | 6,125 (27.2)                                | 5,635 (25.1)                          |
| 3/4 (19.1)           | 6-3/4 (171.5)        | 6,430 (28.6)                                 | 6,430 (28.6)                                    | 6,430 (28.6)                                 | 4,250 (18.9)                         | 8,855 (39.4)                                | 7,440 (33.1)                          |
| 7/8 (22.2)           | 7-7/8 (200.0)        | N/A                                          | 7,575 (33.7)                                    | 8,140 (36.2)                                 | 5,800 (25.8)                         | 12,760 (56.8)                               | 10,730 (47.7)                         |
| 1 (25.4)             | 9 (228.6)            | 9,630 (42.8)                                 | 10,085 (44.9)                                   | 11,600 (51.6)                                | 7,590 (33.8)                         | 15,810 (70.3)                               | 13,285 (59.1)                         |
| 1-1/4 (31.8)         | 11-1/4 (285.8)       | 16,270 (72.4)                                | 16,270 (72.4)                                   | 16,270 (72.4)                                | 11,900 (52.9)                        | 24,790 (110.3)                              | 18,840 (83.8)                         |

1 Use lower value of either concrete or steel strength for allowable shear load.

2 Allowable loads taken from ICC Evaluation Report #4285 (formerly ICBO).

3 Linear interpolation may be used for intermediate spacing and edge distances.

#### **PERFORMANCE TABLE**

#### **C6+** Epoxy Adhesive **Average Ultimate Tension Loads**<sup>1,2,3</sup> **for Reinforcing Bar Installed in Solid Concrete**

| REINFORCING<br>BAR | EMBEDMENT<br>IN CONCRETE | 2000 PSI (13.8 MPa)<br>CONCRETE | 4000 PSI (27.6 MPa)<br>CONCRETE | ULTIMATE TENSILE AND YIELD STRENGTH<br>GRADE 60 REBAR |                                                   |
|--------------------|--------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|---------------------------------------------------|
| In. (mm)           | In. (mm)                 | ULTIMATE TENSION<br>Lbs. (kN)   | ULTIMATE TENSION<br>Lbs. kN)    | MINIMUM YIELD<br>STRENGTH<br>Lbs. (kN)                | MINIMUM ULTIMATE<br>TENSILE STRENGTH<br>Lbs. (kN) |
| # 3 (9.5)          | 3-3/8 (85.7)             | 7,020 (31.2)                    | 9,200 (40.9)                    | 6,600 (29.4)                                          | 9,900 (44.0)                                      |
|                    | 4-1/2 (114.3)            | 9,000 (40.1)                    | 11,540 (51.3)                   | 6,600 (29.4)                                          | 9,900 (44.0)                                      |
| # 4 (12.7)         | 4-1/2 (114.3)            | 11,940 (53.1)                   | 15,140 (67.3)                   | 12,000 (53.4)                                         | 18,000 (80.1)                                     |
|                    | 6 (152.4)                | 16,703 (74.3)                   | 18,880 (84.0)                   | 12,000 (53.4)                                         | 18,000 (80.1)                                     |
| # 5 (15.9)         | 5-5/8 (142.9)            | 14,120 (62.8)                   | 27,740 (123.4)                  | 18,600 (82.7)                                         | 27,900 (124.1)                                    |
|                    | 7-1/2 (190.5)            | 20,040 (89.1)                   | 30,727 (136.7)                  | 18,600 (82.7)                                         | 27,900 (124.1)                                    |
| # 6 (19.1)         | 6-3/4 (171.5)            | 17,940 (79.8)                   | 29,200 (129.9)                  | 26,400 (117.4)                                        | 39,600 (176.2)                                    |
|                    | 9 (228.6)                | 25,520 (113.5)                  | 41,640 (185.2)                  | 26,400 (117.4)                                        | 39,600 (176.2)                                    |
|                    | 10 (254.0)               | N/A                             | 45,000 (200.2)                  | 26,400 (117.4)                                        | 39,600 (176.2)                                    |
| # 7 (22.2)         | 7-7/8 (200.0)            | N/A                             | 45,850 (204.0)                  | 36,000 (160.1)                                        | 54,000 (240.2)                                    |
|                    | 10-1/2 (266.7)           | N/A                             | 60,375 (268.6)                  | 36,000 (160.1)                                        | 54,000 (240.2)                                    |
|                    | 13 (330.2)               | N/A                             | 65,300 (290.5)                  | 36,000 (160.1)                                        | 54,000 (240.2)                                    |
| # 8 (25.4)         | 9 (228.6)                | 30,960 (137.7)                  | 54,180 (241.1)                  | 47,400 (210.9)                                        | 71,100 (316.3)                                    |
|                    | 12 (304.8)               | 30,960 (137.7)                  | 65,420 (291.0)                  | 47,400 (210.9)                                        | 71,100 (316.3)                                    |
|                    | 16 (406.4)               | N/A                             | 86,700 (385.7)                  | 47,400 (210.9)                                        | 71,100 (316.3)                                    |
| # 9 (28.6)         | 10-1/8 (257.2)           | N/A                             | 61,530 (273.7)                  | 60,000 (266.9)                                        | 90,000 (400.4)                                    |
|                    | 13-1/2 (342.9)           | N/A                             | 81,240 (361.4)                  | 60,000 (266.9)                                        | 90,000 (400.4)                                    |
|                    | 19 (482.6)               | N/A                             | 108,000 (480.4)                 | 60,000 (266.9)                                        | 90,000 (400.4)                                    |
| # 10 (31.8)        | 11-1/4 (285.8)           | 44,600 (198.4)                  | 76,500 (340.3)                  | 76,200 (339.0)                                        | 114,300 (508.5)                                   |
|                    | 15 (381.0)               | 49,220 (218.9)                  | 82,320 (366.2)                  | 76,200 (339.0)                                        | 114,300 (508.5)                                   |
|                    | 19 (482.6)               | N/A                             | 120,000 (533.8)                 | 76,200 (339.0)                                        | 114,300 (508.5)                                   |

1 Allowable working loads for the single installations under static loading should not exceed 25% ultimate capacity or the allowable load of the anchor rod.

2 Ultimate load values in 2000 and 4000 psi stone aggregate concrete. Ultimate loads are indicated for the embedment shown in the Embedment in Concrete column. Performance values are based on minimum Grade 60 reinforcing bar. The use of lower strength rods will result in lower ultimate tension and shear loads.

3 SHEAR DATA: Provided the distance from the rebar to the edge of the concrete member exceeds 1.25 times the embedment depth of the rebar, calculate the ultimate shear load for the rebar anchorage as 60% of the ultimate tensile strength of the rebar.

#### Combined Tension and Shear Loading—for Adhesive Anchors

Allowable loads for anchors under tension and shear loading at the same time (combined loading) will be lower than the allowable loads for anchors subjected to 100% tension or 100% shear. Use the following equation to evaluate anchors in combined loading conditions:

 $\left(\frac{Na}{Ns}\right)^{5/3} + \left(\frac{Va}{Vs}\right)^{5/3} \le 1$ 

Na = Applied Service Tension Load

Va = Applied Service Shear Load

Ns = Allowable Tension Load

Vs = Allowable Shear Load

